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Why robust clustering?

LA caeie. @ Outliers are known to be problematic in Cluster Analysis:

Escudero
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Figure: Impact of contamination on 3-means
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< Not always the best strategy (and sometimes infeasible...)
e Cluster Analysis/Anomaly Detection are related topics:

< The first finds crowds of data points, while the second aims to
detect observations far from these crowds
< An unified treatment: Robust Clustering

o Clustered outliers are harmful to (even robust) statistical meth-
ods but can be easily detected through clustering
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» Different approaches for robust clustering:

@ Noise and outliers accommodated by heavy-tailed components:
mixtures of t-distributions [Peel and McLachlan, 2000] or mixtures of
contaminated Gaussian distributions [Punzo and McNicholas 2016]

@ Modelled by a uniformly distributed noise component [Banfield and
Raftery 1993; Coretto and Hennig 2016]

@ Trimming approach [Cuesta-Albertos et al 1997, Neykov et al 2007,

Garcia-Escudero et al 2008]

o We focus on that robust clustering approach based on trim-
ming
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» Standard statistical tools are applied in trimming after (hope-
fully) discarding outliers within the fraction « of trimmed ob-
servations ~» Easy interpretation

o Trimming self-determined by data [Rousseeuw 1984, 1985]:

o LTS and LMS in regression
< MVE and MCD in location-and-scatter estimation

o The use of C-steps (concentration steps) [Rousseeuw and van

Driessen 1999] forms the basis for its practical application
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Robust clustering based on trimming
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Trimmed K-means [Cuesta-Albertos, Gordaliza and Matran 1997]

o Given {x1,...,xp} C RP, the trimmed k-means search for G
Robu! o
cuserng and  CeNters fiy, ..., g and a partition

trimming

L.A. Garcia-
Escudero

{R(), Rl, ceey Rg} of {1, 2, cony n}

with
#FRo = [na]

minimizing

G
j{: j{: [ xi —-/LgHQ

g=1lieR;
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o Given {x1,...,xp} C RP, the trimmed k-means search for G
Robu! o
cuserng and  CeNters fiy, ..., g and a partition

trimming

L.A. Garcia-
Escudero

{R(), Rl, ceey RG} of {1, 2, cony n}
with
#Ro = [na]
minimizing
G
DD ki gl
g=1li€Rg

® Ry,..., Rg gives the partition into G clusters, but a fraction «
of observations (those with indexes in Ry) are trimmed
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Trimmed K-means
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Figure: Trimmed 3-means with a = 0.05. Trimmed points as "X
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Trimmed K-means alg. [G-E Gordaliza and Matran 2003]
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Trimmed K-means alg. [G-E Gordaliza and Matran 2003]
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@ Random initializations:
Robust G random observations ~ Initial centers ,u(l),..., u%

clustering and

trimming 9 C_Steps:
2.1 Take

il 12 o . _
Dig = [Ixi — pg "[|” and D; ™ . Dig

and D(l) < D(g) <. < D(n) to get
Rg = {f : Dig = Dj and D; < D(["(l_a)])}

forg=1,...G
2.2 Update centers i, = avg{x; : i € Rg}
@ Output: that with the minimum value of the target function.

o It reduces to Lloyd’s k-means algorithm when oo = 0

11/67



TCLUST as an extension of trimmed k-means

A cos® Trimmed k-means favours spherical /equally scattered clusters
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TCLUST as an extension of trimmed k-means

A cos® Trimmed k-means favours spherical /equally scattered clusters
Fdee o More flexible clustering associated to G normal components
Robust with location {pg}gzl and scatter matrices {Zg}gzl

clustering and
trimming
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Figure: Trimmed 3-means (left). TCLUST G = 3, ¢ = 12 and a = 0.05 (right)
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TCLUST [G-E, Gordaliza, Matran and Mayo-Iscar 2008]
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Robust

clustering and

trimming o TCLUST searches for centers pui, ..., jig, scatter matrices
Y1, ... Tg, weights my, .., mg (with 10 mg = 1), and a
partition {Ro, Ry, ..., Rg} with #Ry = [na] maximizing

G
Z Z log [mgd(xi; g, Xg)] s
g=1icR,

where ¢(+; 1, X) is the p.d.f. of a p-variate normal
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TCLUST's eigenvalues-ratio constraint
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i ratio constraint:

Maxg—1,..Gj=1,..p Ni(Xg)
Ming—1 . Gj=1,..p N(Zg)

< ¢

where {)\J-(Z)}J’-’:1 is the set of eigenvalues of ¥ and ¢ > 1
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TCLUST's eigenvalues-ratio constraint
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Robust o Another important ingredient of TCLUST is the eigenvalues-
clustering and . . A
i ratio constraint:

Maxg—1,..Gj=1,..p Ni(Xg)
Ming—1 . Gj=1,..p N(Zg)

< ¢

where {>\J-(Z)}J’-’:1 is the set of eigenvalues of ¥ and ¢ > 1
o Trimmed K-means when ¢ =1 (and m = ... = 7g)

e Any ¢ < 0o makes the constrained maximization of the trimmed
likelihood well-defined (target function unbounded when p; =
x; and |Xg| | 0)

o Also prevents detecting “spurious” clusters
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Spurious clusters

Lo S o A different, but also relevant, source of lack of robustness
o ¢ Spurious clusters (non-interesting clusters formed by a few
st . .
clustering and almost collinear observations):
trimming
o
=
o
o

Figure: A spurious cluster detected with |Xg| ~ 0
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Robust

MCD and trimmed mixture likelihoods
clustering and

trimming e MCD in the case G =1 (for a large ¢)
e Trimmed mixture likelihoods [Neykov, Filzmoser, Dimova and Neytchev
2007; G-E, Gordaliza and Mayo-Iscar 2014] maximizing

G
Z log Z pg(xi: Mg, S¢)
g=1

i€ER

with #R = [n(1 — «)]
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trimming @ C_steps.‘
2.1 Take

L.A. Garcia-
Escudero

R | . -1 -1 .= .
Dig =mg "¢(xi, jig ", g ") and Dy = max Dy
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2.1 Take
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t—1 t—1 §t—1
D,'g = 7Tg ¢(x,~,,ug ,Zg ) and D,' = r?axGD,'g
g=1...,

and D(l) < D(2) <...<Z D(,,) to get
Rg = {I . D;g = D,' and D; Z D([na])}
2.2 MLE{x; :i € Rg} ~ mg, pug and Sg

2.3 Eigenvalue-ratio constraint imposed on the S; to update Z;

@ Output that with the maximum value
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Optimal eigenvalues truncation

LA Gac- o The optimal truncation operator:

Escudero

. . /
Robust = I =
e Sg =cov{x; : i € Rg} = Ugdiag(dg1, ..., dgp) Uy,
trimming

with UpUg = 1. If
[dgi]n = max{m, min{dg, c- m}},
ng = #Rg, and
P
m* = arg m|n Z ng Z (Iog[dgl]m oeld /]m)
g=
then the optimal update is

Z; = Ugdiag([dg1]m=, ---, [dgp]m*)Ug
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from an i.i.d sample {Xi,..., X} with X; ~ P
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Population version for a theoretical P and its empirical version
from an i.i.d sample {Xi,..., X} with X; ~ P

Consistency of empirical toward population solution

» Good robustness performance:

< Influence function [Ruwet et al 2012]
< Breakdown point [Ruwet et al 2013]

An efficient algorithm and packages are available:

& tclust package in R [Fritz, G-E and Mayo-Iscar 2012]
< FSDA Matlab toolbox [Cerioli, Riani, Atkinson and Corbellini 2018]
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Higher dimensions and TCLUST...

L.A. Garcia-
Escudero

;ﬁiﬂ;;:igh o Higher-dimensional problems are increasingly common in cur-
rent statistical practice
o TCLUST works well for small dimensions, but face challenges
as p increases:
@ Difficulties in initialization
@ High number of parameters involved
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Example: Digits data

A coen© Digits data: A sample of n = 1756 handwritten digits (3",

Fecudero “5" and “8") from the US postal services (subset of a dataset
from UCI). Each digit is a 16 x 16 gray level image resulting in
p = 162 = 256 dimensional vectors:
ICLUS,_T high B )

00 02 04 06 08 10

00 02 04 06 03 10 00 02 04 06 035 10 00 02 04 05 08 10

00 02 04 06 08 10
00 02 04 06 08 10

00 02 04 08 08 10 0D 02 04 06 08 10 00 02 04 05 08 10

Figure: Six digits images from the Digits dataset
22/67



Example: Digits data

L.A. Garcia-
Escudero
o TCLUST applied to the Digits data with G = 3, ¢ = 12
and a = 0.05 produces (clusters shown in rows, with trimmed
TCLUST high . . . .
dimensions images as 0, and actual digits in columns):

3 5 8
0 21 38 29
1 438 259 81
2 18 61 418
3 181 198 14

» Not satisfactory classification results
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Example: Digits data
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o TCLUST applied to the Digits data with G = 3, ¢ = 12
and a = 0.05 produces (clusters shown in rows, with trimmed
TCLUST high . . . .
dimensions images as 0, and actual digits in columns):

3 5 8
0 21 38 29
1 438 259 81
2 18 61 418
3 181 198 14

» Not satisfactory classification results

» Requires considerable computing time
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Difficulties in initialization
L.A. Garcia-

Escudero 1 he algorithm ideally requires for initialization a random sub-
sample of size G x(p+1) being outlier-free and properly grouped:

First p+1 < Cluster 1

TCLLBT i G x (p+ 1) observations = Second p+1 < Cluster 2

dimensions

G-thp+1 < Cluster G

“D
O@

mmwmma.
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sample of size G x(p+1) being outlier-free and properly grouped:

First p+1 < Cluster 1

TCLLBT i G x (p+ 1) observations = Second p+1 < Cluster 2

dimensions

G-thp+1 < Cluster G

“D
O@

» That appropriate initializations becomes increasingly unlikely

wmwmma.
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Difficulties in initialization: possible remedies

“fuwie o Recent implementation of the tclust package (version 2.0:

jointly with V. Todorov):

@ nstart random initializations with small niter1 of C-steps
eLuer e @ nkeep solutions with the largest values which are iterated until
I
dimensions convergence or further niter2 C-steps
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Difficulties in initialization: possible remedies

“fuwie o Recent implementation of the tclust package (version 2.0:

jointly with V. Todorov):
@ nstart random initializations with small niter1 of C-steps

LUt e @ nkeep solutions with the largest values which are iterated until
dimensions convergence or further niter2 C-steps

o Combining partially correct information from random initial-

izations can lead to effective ensemble initializations [Alvarez-
Esteban et al 2025+]:

@ Partitions {Cp} 335" resulting from random initializations
@ Build an affinity matrix A (n x n) with:

1
A = ——— b : x; and x;: co-clustered d
nstart#{ x; and xj» co-clustered (an
non-trimmed) in Cy, }

@ Exploit the information in matrix A for new initializations
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e A huge number of parameters:
1
dT_CLusThigh (G—l)—{-G-p—i—G-M.

2

<~ What makes TCLUST attractive and flexible for low p leads to
failure when p grows...
< Even more problematic when n is small relative to p
o The eigenvalue ratio constraint “regularizes” the target func-
tion when c is small. However, small ¢'s (¢ ~ 1) enforce
trimmed k-means—type results

» More sophisticated constraints [G-E, Mayo-Iscar and Riani 2020, 2022]
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Dimension reduction and clustering
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» Applying PCA and then clustering (tandem approach) is not the

best strategy [Chang 1983]
RLG method
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Dimension reduction and clustering

L.A. Garcia-
Escudero

» Applying PCA and then clustering (tandem approach) is not the

best strategy [Chang 1983]
RLG method

o Perform clustering and dimension reduction simultaneously
o Observations clustered around G affine subspaces:
& Mixtures of PPCA [Tipping and Bishop 1997]

< Mixtures of Factor Analyzers [Ghahramani and Hinton 1997; McLach-
lan and Peel 2000]
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RLG [G-E, Gordaliza, San Martin, van Aelst and Zamar 2009]

L.A. Garcia-
Escudero
o The Robust Linear Grouping (RLG) searches for G affine
subspaces B, ..., B¢ with intrinsic dimensions g1, ..., ¢ and a
partition {Ro, R1, ..., Rg} with #Ry = [na] minimizing
RLG method

Z Z l[xi — Png XI)||2

g=lieR,

o Prg(x) ~+ orthogonal projection of x € R” onto subspace B
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RLG [G-E, Gordaliza, San Martin, van Aelst and Zamar 2009]

o The Robust Linear Grouping (RLG) searches for G affine
subspaces B, ..., B¢ with intrinsic dimensions g1, ..., ¢ and a
partition {Ro, R1, ..., Rg} with #Ry = [na] minimizing

Z Z l[xi — Png XI)||2

g=lieR,

L.A. Garcia-
Escudero

RLG method

o Prg(x) ~+ orthogonal projection of x € R” onto subspace B
< LTS-PCA when G = 1 [Maronna 2005; Croux et al 2017]
< Trimmed k-means when g1 = ... =gz =0
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RLG algorithm

® Random initializations:
Zle(qg + 1) random observ. ~~ Affine suspaces 19,..., B

L.A. Garcia-
Escudero

RLG method
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RLG algorithm
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RLG method

D,‘g = ||X,' — Pngfl(X,')||2 and D,' = g=r11’17i.I.‘1.7G D,'g

and D(l) < D(2) <...<Z D(n) to get
Rg = {i: Dig = D; and D; < D([n(l—a)])}

2.2 Update B. based on PCA, {x; : i € R}
g dg g
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RLG algorithm

@ Random initializations:

L.A. Garcia-
Escudero

Zle(qg + 1) random observ. ~~ Affine suspaces 19,..., B
® C-steps:
2.1 Take

RLG method i
o D,‘g = ||X,' — PrBéfl(x,-)||2 and D,' = ngI.I.‘IWG D,'g

and D(l) < D(2) <...<Z D(n) to get
Rg = {i: Dig = D; and D; < D([n(l—a)])}

2.2 Update Bj based on PCA, {x; : i € Ry}
©@ Output that with the minimum value of the target function

o It can be applied using r1g() function in tclust package
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RLG focus on orthogonal errors

LA caen. @ lsotropic orthogonal errors and troubles with intersecting sub-
Escudero SpaceSZ

RLG method

Figure: Troubles with intersecting subspaces (g1 = g2 = 2)
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Trimmed HDDC method

L.A. Garcia-
Escudero
e A compromise between TCLUST and RLG
o It arises from the HDDC (High Dimensional Data Clustering)
approach [Bouveyron, Girard and Schmid 2007; Bouveyron and Brunet-Saumard
B 2014], where ,
HDDC Yo = UgAgUL,

& Ug is the orthonormal matrix with the eigenvectors of >,
< Ag is a diagonal matrix with the sorted eigenvalues,

but with a special parsimonious structure on the Az matrix.
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Trimmed HDDC method

L.A. Garcia-
&, Ag has the form
Agl 0
0 A ’ %
HOBC Ag = £ Ag 0
0
p—q,
0 A (p—ag)

where:
o Agg=>Agforl=1,...,qg.and g =1,...,G
o qgg<pforg=1,.,G
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Trimmed HDDC d

L.A. Garcia-
Escudero
» Additional eigenvalues-ratio constraints imposed:
maxg:17"‘7G7j:17“‘7qg Ag/ <
- i S 1,
Trimmed mlng=1,...,GJ=1,,..,qg g
HDDC
and \
maXg—1,...
- g ) 7G g < C

o The second constraint is the most relevant one
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Trimmed HDDC method

fscuders o Let Bg be the affine subspace passing through 1, and spanned
by the first g columns of Ug denoted as ug1, ..., Ugq,

o We have

1
log[mg(xi; mg, Lg)] = log(mg) — 2 <HPng(Xi) - ,Ug”%sg

Trimmed
HDDC

1
+ )\—IIXi — Prg, (x)|?
g

£ log(he) + (b — g) og(e)
I=1

+p Iog(27r))
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Trimmed HDDC method

L oee e Let Bg be the affine subspace passing through pz and spanned
by the first g columns of Uz denoted as ug1, ..., Ugq,
* We have
1 (& (xi — g, Ug)?
log[mgd(xii Mg, Sg)] = log(mg) — 5| D 15—
2 gl
Trimmed =1
HDDC 1 dg )
+ )\—HX,' — g — Z<Xi — g Ugl) Ugi||
& I=1

+ Zg log(Agr) + (P — qg) log(Ag)
1=1

+ p|og(27r)> ~+ Only first g eigenv.!!!
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Trimmed HDDC method

LA caci @ Let Bg be the affine subspace passing through 1z and spanned
Fewdee by the first g columns of U, denoted as ug1, ..., Ugq,

o We have

1
loglmg (i e S¢)] = og(mg) — ( IPrs, () — pgllh,

—~
TCLUST type in Bg

Trimmed
HDDC

1
+ )\— |X,' - Png(X,')||2
g

~

-

RLG type in B
dg
+) “log(Agr) + (P — qg) log(Xg)
1=1

+p Iog(27r))
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Trimmed HDDC d

L.A. Garcla- @ Summal’y:

Escudero

Trimmed
HDDC

Figure: Trimming x; with large orthogonal residuals or large distances after projection
onto the approximating affine subspace
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Trimmed HDDC method

LA S o Trimmed classification /mixture likelihoods as
G
> D loglmgd(xii ng, Tg)]
g=lieRy
and

Trimmed G

HDDC
Z log Z Tgd(Xi; tg, Lg)
iER g=1

that (in both cases) require (in the M-step) the maximization
of completed likelihoods:

n G
SN 2 S log [med(xii g, )]

i=lg=1 icRy
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Trimmed HDDC algorithm

L.A. Garcia-
Escudero
@ Random initializations: To be explained later...
® C-steps:
@ Update zjg's: Let
Relevant info from Zt71
Trimmed
p =7l t—1 yt—1 yt—11Ge
HDDC Dig =7, (X,,/J,g ,{u g Ay HE 1)

D; = maxg=1,....¢ Djg (clasiff.), Di = Z:=1 Djs (mixt.) and

Zig = { " Ve . (clasiff.) or zjz = + (mixt.),
0 otherwise > g1 Dig

but zi; =0, forevery g =1,...,G, if D; < D([na])
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Trimmed HDDC algorithm

L.A. Garcia-

Escudero
@ Update parameters:
. 26:1 Zig
2.2.1 Update weights 7} = m
L ZigXi
2.2.2 Update means u} = g1 s
g ZG z
Trimmed 1 g=1“/8
Hope 2.2.3 Compute Sp = ——— 25:1 Zig(xi — ph)(xi — pk) and ob-
g=1 Zig
tain its eigenvectors uy, ..., uét,qg associated to the g,-th largest

eigenvalues dg1, ..., dgq, and obtain

dg =

(trace(Sg) — Z der).

P —dg =1
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Trimmed HDDC algorithm

2.2.4 Impose constraints on

{dgi}i=1,....q }§=1 and {dg}gc=l

by applying twice the optimal truncation operation described for
TCLUST with constants ¢; and ¢ and return

. G G
LgB?Ed {{A;;}I:l,...,qg }g:l and {)‘;}gzl

© Output that with the maximum value of the target function

L.A. Garcia-
Escudero
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© Output that with the maximum value of the target function
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¢ Only eigenvalues/eigenvectors associated to the g, largest eigen-
values required (Arnoldi's method...)
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Trimmed HDDC algorithm

L.A. Garcia-
Escudero
2.2.4 Impose constraints on
G G
{der}i=1,....q0 tg=1 and {dg}g=1
by applying twice the optimal truncation operation described for
TCLUST with constants ¢; and ¢ and return
i t G t16G
[med H{Aer}i=1,. . qs b1 and {Ag}

© Output that with the maximum value of the target function

¢ Only eigenvalues/eigenvectors associated to the g, largest eigen-
values required (Arnoldi's method...)

o TCLUST as a particular case if g = p—1 and ¢; = ¢ and
connections with the trimmed MFA [G-E et al 2016]
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Initialization step

o Select a random subsample of size ZgG:l(qg-lQ) (€ Gx(p+1))

L.A. Garcia-
Escudero

Trimmed
HDDC
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Initialization step

L.A. Garcia-
Escudero
o Select a random subsample of size ZgG:l(qg-lQ) (€ Gx(p+1))
e The minimal set of observations to initialize all parameters...
Trimmed
HDDC
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Initialization step

L.A. Garcia-
Escudero
. G
¢ Select a random subsample of size 3 7/ (qg+2) (< G x(p+1))
e The minimal set of observations to initialize all parameters...
¢ From observations Xx;, ..., Xj,_,, (in general position):
: 0 _ , ,
Trmmed o Take pg = avg{x;,...,x;_,}

o Take ugl,...,ugqg and dg1,...,dgq, associated to the g, largest
eigenvalues of cov{x;, ..., i ,,}

< dg equal to the smallest eigenvalue divided by p — g,

o If Xis the (gg+2) x p matrix whose columns are these observations
centred with ug then, instead of using p x p matrix X’X, use the

(gg +2) x (g +2) matrix XX'...
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Digits data (revisited)

L.A. Garcia-
Escudero

o tHDDC with g1 =g =g3 =8, c1 =5, @ =2 and a = 0.05
for the Digits data:
Trimmed O 1 2 3
HDDC 3 20 29 23 586
5 23 3 510 20
8 44 484 7 7

43/67



Digits data (revisited)

L.A. Garcia-
Escudero
» tHDDC with g1 =g =93 =8, c1 =5, & =2 and a = 0.05
for the Digits data:
) 0 1 2 3
Trimmed

HDDC 3 20 29 23 586
5 23 3510 20
8 44 484 7 7

o Better performance than TCLUST and RLG
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Digits data: outliers

Cn e @ IfDig = mgd(xi; g, Lg) and Dj = maxg—1,.._ ¢ Djg, the trimmed

Escudero H H .
observations are those with the smallest D;:
=
S
T
8
Trimmed T
HDDC
8 278 3534113°L 0,4 o 7848 933 1738339 408 seppa
8
I e v &712 889 18905, 116 1 3555 1678,
5. 426 . © 13051394 160171704
a4 N 902 1225%, 1381 17296
220 . 295 1050 1150 [ 1575 20
L7 .
. e S
¥ 617. . 1472
104 N .
. . 1404
. . 1471
T T T T
o 500 1000 1500

Figure: D; for i = 1, ...,1756 with cluster assignments in colors and black for trimmed
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L.A. Garcia-
Escudero

Trimmed
HDDC

Digits data: trimmed digits

Some of the observations with the smallest D; values (trimmed
ones):

1404 104 1734
0.0 0.4 o8 0.0 0.4 o8 0.0 0.4 o8

1635 1205 772 1588
0.0 0.4 o8 0.0 0.4 o8 0.0 0.4 o8 00 0.4 o8

Figure: Some trimmed units
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Digits data: estimated centers

o The estimated location vectors p1, po and pus:

L.A. Garcia-
Escudero

Trimmed
HDDC

Figure: Estimated clusters’ location vectors
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L.A. Garcia-
Escudero

Trimmed
HDDC

@ Ug1, Ug2, ...

Digits data: Loadings

. T

00 02 04 06 08 10

00 02 04 06 08 10

00 02 04 06 08 10

00 02 04 06 08 10

, Ugq, loadings interpreted as “variations modes”:

Figure: Loadings (g3 = 8) for the cluster including the 3's: I for positive weights
and M for negative ones
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Digits data: scores

A cuen ® Scores in clusters, ti; | = (Xj — g, Ug) for I =1,..., qg, reflect
Fecudero proximity of observations in clusters and also interpretability via
the loading vectors values:

Scores cluster 1 Scores cluster 2 Scores cluster 3
o 1358 732, . LY
; e g
1 A 2
- spaps 7 .
Trimmed
HDDC 113

st S, m%ﬂ
o isie0 e
1525 WS%:Q«;EWEK! 10556
® o ki

S42e2 713
T T T T T T : T T T
= o s s o s K o s

™ ™ ™

Figure: Scatter plots of the scores (/ = 1,2) for the three clusters
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Digits data: diagnostic plots

LA G- ® Score distances as

Escudero

SDjg = ||Prs,(xi) — tglls, =

Trimmed
HDDC
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Digits data: diagnostic plots

LA G- ® Score distances as

Escudero

SDjg = ||Prs,(xi) — tglls, =

¢ Orthogonal distances as

Trimmed
HDDC 1 1
ODjg = —=lIxi = Pri, (x)ll = —=

Vs Vs

e
Xi — pg — Z tig,iUgl
I=1
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Digits data: diagnostic plots

LA G- ® Score distances as

Escudero

SDjg = ||Prs,(xi) — tglls, =

e Orthogonal distances as

Trimmed
HDDC 1

1
ODj, = ——||x; — Pr il = ——
g \/)\—gHX Bg(X)H \/)\_g

o Computed for A; = {i : Djg = D;} (trimmed observations

also included) and cutoffs | /X3 975 for the SDjg and (fiop +

e
Xi — pg — Z tig,iUgl
I=1

80D20,975)3/2 where fiop and E%D are the robust mean and
variance based on MCD on {OD,?g/3} for the ODjg [Hubert at al

2005]
49 /67



Digits data: diagnostic plot example

A coe @ Score and orthogonal distances:

Escudero

Robust 3 T
clustering and 1471 H
trimming 1
6 |

TCLUST high 1379 1650 1635, 1208 3 .
dimensions w0 90749°0 173850 :
B B ~ 849832 208 1381 H
" . 153 gg7 1678 182 1445 17588804029 3
G method 1138 ,,848 %_3_@5%37 1212 '
Trimmed .
HDDC o .
8§ ® :
Otbher issues :
Conclusions :
w |
- H

S T T T T T T
15 2.0 25 3.0 3.5 4.0 4.5
SD_i

Figure: SDjg and ODj, for g corresponding to the cluster with the 3's
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Digits data: diagnostic plot example

Some of the atypical digits detected in the previous plot:

L.A. Garcia-
Escudero

1639 697 197

Trimmed 2
HDDC

oz 0a  oe  os 10 o0

Some highlighted outliers using SD;; and ODj; for the cluster with the 3's
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Digits data: discriminant factors

LA G o From the Dig = mgd(xi; g, Lg), let

Escudero
Djay < Di2) < ... < Dig)
and define Discriminant Factors as

Di(c-1)

S DF(i) = log if x; is not trimmed

HDDC i(e)
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Escudero
Djay < Di2) < ... < Dig)
and define Discriminant Factors as

Di(c-1)

S DF(i) = log if x; is not trimmed

HDDC i(G)
o If D* = D([pq)) is the cutoff to label outliers then

D.
DF(i) = log D_:“ if x; trimmed
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Digits data: discriminant factors

LA Gacia o From the Dig = mg(Xi; g, Lg), let

Escudero

Di1) < Djzy < .. < Dy(g)
and define Discriminant Factors as

Di(c-1)

S DF(i) = log if x; is not trimmed

HDDC i(G)
o If D* = D([pq)) is the cutoff to label outliers then

D.
DF(i) = log D_:“ if x; trimmed

e DF(i) < 0 but DF(i) ~ 0 for the most doubtful assignment
decisions.

52/67
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Trimmed
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Conclusions

Digits data: silhouette plot

e Silhouette plot:

Trimmed

Cluster with 3's

Cluster with 5's

Cluster with 8's

I T T T T T T 1
-350 -300 -250 -200 -150 -100 -50 0

Figure: Silhouette plot with the DF(i) values
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Choice of hyperparameters

L.A. Garcia-
Escudero

® g1,...96 (even G...), , c1 and 777

Trimmed
HDDC
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HDDC
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® g1,...96 (even G...), , c1 and 777
o A complex problem... as in others (robust) clustering methods
» Cannot be fully automated because user decisions are often re-
Trimmed

HDDC quired
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Choice of hyperparameters

L.A. Garcia-
Escudero
® g1,...96 (even G...), , c1 and 777
o A complex problem... as in others (robust) clustering methods
» Cannot be fully automated because user decisions are often re-
Trimmed

HDDC quired
» The intrinsic dimensions q1,...,gg can be treated as inner pa-

rameters to be estimated within the iterative steps of the
algorithm
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Catell procedure estimating q,'s

LA coen. @ Catell procedure based on differences Ag 11—\, of the sorted

Fecudero eigenvalues of S, (with an upper bound gmax):
Trimmed ° el
HDDC

(o) selected dim.= 5

0.2

A

°© 6o NV

©C2o0ocoo| g o © ©0°9790:%9

T T T T T T T
5 10 15 20 5 10 15

Figure: Estimate gg as largest index where (normalized) differences exceed
a threshold tresh: gy = 5 selected with tresh=0.2
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Catell procedure estimating q,'s

LA caci © Estimating the gg's requires a BIC-type [Cerioli et al 2018] modified
Fewdee target function:

Trimmed
HDDC
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Fewdee target function:

—2 x trimmed log-likelihood(qi, ..., gg) + complexity penalty
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Catell procedure estimating q,'s

LA caci © Estimating the gg's requires a BIC-type [Cerioli et al 2018] modified
Fewdee target function:

—2 x trimmed log-likelihood(qi, ..., gg) + complexity penalty

with complexity penalty equal to

Trimmed

HDDC G )
log ([n(1 — @)]) G—1+\G/[J/—|-1+ (Z%—l) <1—C—1>

weights  means g=1

the largest eigenvalues

F14(6-1) (1_Ciz> +i <qu_ qg(qg2—1)>

g=1

the smallest ones .
orthonormal eigenvec.
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Example I: estimating q;'s

s con© Simulated data set with n = 1000 and p = 200 where

Escudero o py = 0.2-1300 and T = diag(5,4,3.2,1,0.1,...,0.1) : 57% rows
o pp = —0.2-109 and X, = diag(4,3,2,0.15, ...,0.15) : 38% rows
o xij ~U[-2,2]: 5% rows

Trimmed —
HDDC

.".ll'(',' 1 I.T..-]"‘u- ‘-’!-ﬂ““\.‘:"“‘ l '-[, il '|J f; ‘}e "'..l-rli‘ |

. 'fi-'ln"’i.l"'i*

'U ﬁ:u"'l J i ‘l(l' '-"'Mi.'i'-;'l‘:";”ll ' "‘"M"Ii‘ '| |

T T T
o] 100 150 200
x1-x200

Figure: Line plots of the simulated dataset with g1 =5 and g» =3
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Example I: estimating q;'s
L.A. Garcia-

Escudero o tHDDC with G = 2, Qmax — 20, = 10, C = 2 and a = 0.05
returns g1 = 5 and > = 3:

Au: 47656 4.1874 3.0381 1.9648 1.0376  A;:0.0983

Agir 3.6971 29656 2.0139 Ao 0 0.1482
1 2 0
Trimmed 0 0 0 50

HDDC

1670 0 O
2 038 O
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Example I: estimating q;'s
L.A. Garcia-

Escudero o tHDDC with G = 2, Qmax — 20, = 10, C = 2 and a = 0.05
returns g1 = 5 and > = 3:

Au: 47656 4.1874 3.0381 1.9648 1.0376  A;:0.0983

Agir 3.6971 29656 2.0139 Ao 0 0.1482
1 2 0
Trimmed 0 0 0 50

HDDC

1670 0 O
2 038 O

o TCLUST with G =2, ¢ =12 and a = 0.05:

1 2 0
0 0 2 48
1502 90 O # x10 computing time
2 68 288 2
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Example Il: Digits data

L.A. Garcia-
Escudero
o tHDDC estimating g,’s with Catell for the Digits data returns
g1 = g2 = 10 and g3 = 9 (with gmax = 20 and tresh=0.05):
Trimmed O 1 2 3

HIDIDE 3 25 16 24 593
5 22 8522 4
8 40491 2 9
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Example Il: Digits data

L.A. Garcia-
Escudero

o tHDDC estimating g,’s with Catell for the Digits data returns
g1 = g2 = 10 and g3 = 9 (with gmax = 20 and tresh=0.05):
Trimmed O 1 2 3
RIDIDIE 3 25 16 24 593
5 22 8 522 4
8 40 491 2 9

o Even better misclassification rate...
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Other issues




Cellwise trimming
L.A. Garcia-

Escudero o Robustness against cellwise contamination [Alqallaf et al 2009]
o Cases — x; = (X1, ..., Xjp)' € RP and Cells — x; € R

Other issues
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Cellwise trimming
L.A. Garcia-

Escudero Robustness against cellwise contamination [Algallaf et al 2009]
Cases — x; = (Xj1,...,Xjp)’ € RP and Cells — x;; € R

A lot of useful information sacrificed by casewise trimming:

Other issues

n =100 x p = 80 data-matrix (left) with a 2% of outlying cells and trimmed
x; with casewise trimming in black (right)
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Cellwise trimming
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o Cellwise trimming—TCLUST [Zaccaria, G-E, Greselin and Mayo-Iscar
2025+]
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2025+]

< Extension to mixture modelling of the cellMCD [Raymaekers and
Rousseuw 2024]
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Cellwise trimming

L.A. Garcia-
Escudero
o Cellwise trimming—TCLUST [Zaccaria, G-E, Greselin and Mayo-Iscar
2025+]
< Extension to mixture modelling of the cellMCD [Raymaekers and
Rousseuw 2024]
< Alternating steps: Detection of outlying cells <+ EM for Gaussian
Other issues mixtures with missing cells

e Cellwise trimming—RLG [G-E, Rivera, Mayo-Iscar and Ortega 2021]
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Cellwise trimming

L.A. Garcia-
Escudero
o Cellwise trimming—TCLUST [Zaccaria, G-E, Greselin and Mayo-Iscar
2025+]
< Extension to mixture modelling of the cellMCD [Raymaekers and
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Other issues mixtures with missing cells

e Cellwise trimming—RLG [G-E, Rivera, Mayo-Iscar and Ortega 2021]

< Extension of the cellwise-robust PCA [Maronna and Yohai 2012]
o Alternating Weighted Least Squares (AWLS)
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(3] LTS-based predictions for PI’BE(X,') [G-E, Rivera, Mayo-Iscar and Ortega
2021]

o Computationally intensive approach
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» Robust functional clustering through functional subspaces [Bou-
veyron and Jacques 2011]
o We just focus on moderately (recall the title of the talk!!) high
dimensional cases
< Noise variables that do not provide useful information about
the clustering structure
< Variable selection in robust clustering [Ritter 2014] and sparsity-
based approaches [Kondo, Salibian-Barrera and Zamar 2016; Brodinova
et al 2019; Raymaekers and Zamar 2022]
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@ TCLUST faces limitations in high-dimensional settings

@ Proposed method tHDDC, as a compromise between TCLUST
and RLG, with initial promising results

Conclusions

@ Plenty of room for further research
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