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Motivation

Contemporary machine learning has seen a surge in applications of deep
neural networks in

I speech and visual recognition (classification)
I feature extraction
I sample generation

The effort of understanding why deep learning methods work leads to
new mathematical results in the areas of

I probability
I statistics
I statistical physics
I but also functional analysis, geometry, optimal control . . .
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Neural networks

Artificial neural networks are biologically-inspired ways to parametrize
functions

f : Rn0 → RnL

as stacked compositions of
linear (or affine) maps
non-linear functions (usually acting componentwise).

Much terminology is borrowed from neuroscience, e.g.

neurons, activation functions, connections, training etc.,

as well as some fundamental structures (e.g. convolutional architectures are
inspired by the retina).
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Graphical representation of a fully connected feed-forward neural network with
input size n0 = 3, output size n3 = 2 and layer sizes n1 = 4, n2 = 3:
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Random neural networks

A successful approach focuses on the scaling limit of large neural networks
whose parameters are randomly sampled.

Several reasons (besides interesting mathematics):

Bayesian approach: prior distribution on model parameters (weights and
biases to be updated after observations (training set in supervised
learning).

Large neural networks in practice are trained via iterative optimisation
algorithms (SGD, stochastic gradient descent) which require careful
(random!) initialization.

It turns out that training only a fraction of the parameters (the last layer) of
a randomly initialized network give still good performances in applications
(reservoir computing).
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Related literature

The study of random neural networks is indeed not new. Some milestones:

1958 Rosenblatt pioneering works with the perceptron

1996 Neal first proved that random wide shallow networks (one hidden layer)
may converge to a Gaussian process

2018 Matthews et al. Lee et al. extended Neal to deep architectures (more
hidden layers)

2019 Lee et al. realized that also after (lazy) training Gaussian behaviour is
preserved (Neural Tangent Kernel NTK theory)

2018 Mei et al. in parallel study the mean field limit of large deep networks.
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Our result in brief

1 We provide quantitative proof of the Gaussian behaviour of deep fully
connected neural networks with random parameters at initialization.

2 We complement the works by Matthews et al., Lee et al., and later ones
providing explicit rates for the convergence for deep networks.

3 We use the Wasserstein distance of order 2 (we believe in fact that for
any order p ≥ 1 similar rates should hold as well).
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Notation: Wasserstein distance of order 2
Given probabilities p, q on Rd , define

W2(p,q) = inf

{√
E
[
‖X − Y‖2

]
: X , Y random variables with PX = p, PY = q

}
.

With a slight abuse we writeW2(X ,Y ) instead ofW2(PX ,PY ).
The triangle inequality holds:

W2(X ,Z ) ≤ W2(X ,Y ) +W2(Y ,Z ).

A sequence (Xn)n converges to X , i.e.,

lim
n→∞

W2(Xn,X ) = 0

if and only if

lim
n→∞

Xn in law and lim
n→∞

E [Xn ⊗ Xn] = E [X ⊗ X ].
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Notation: Gaussian variables
Recall that a (real) Gaussian random variable X with mean µ and
variance σ2 > 0 has absolutely continuous law PX with density

exp

(
−1

2

(
x − µ
σ

)2
)

1√
2πσ2

,

while if σ2 = 0, X = µ is constant.
A Gaussian variable with values in Rd by definition is such that

〈v ,X 〉 =
d∑

i=1

v [i]X [i]

is real Gaussian for every (deterministic) v ∈ Rd ,
Given any symmetric positive semi-definite K ∈ Rd×d , write

N (K )

for the law of any centred Gaussian distribution on RS with covariance K ,
i.e.,

E [X [i]] = 0, E [X [i]X [j]] = Σ[i , j] for every i , j .
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Notation: neural networks

We consider a (fully connected) neural network f : Rn0 → RnL , with parameters:
the total number of layers (including input and output): L + 1
layer sizes n0 (input), n1, . . ., nL−1 (hidden), nL output
parameters: weights W = (W (`))L−1

`=0 and biases b = (b(`))L−1
`=0 ,

W (`) ∈ Rn`+1×n` , b(`) ∈ Rn`+1 ,

(Lipschitz) activation function σ : R→ R, e.g. ReLU σ(z) = max {0, z}.
Recursive definition:

f (1) : Rn0 → Rn1 , f (1)(x) = W (0)x + b(0),

and, for ` = 2, . . . ,L,

f (`) : Rn0 → Rn` , f (`)(x) = W (`−1)σ(f (`−1)(x)) + b(`−1),

where the activation function σ is understood componentwise.
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Theorem (Basteri and T.)

Consider weights W and biases b that are independent Gaussian random
variables, centred with

E
[
(W (`)

i,j )2
]

=
1
n`
, E

[
(b(`)

i )2
]

= 1, for every `, i and j .

Then, for every set of k inputs X = {xi}k
i=1 ⊆ Rn0 , the law of the output

f (L)[X ] = (f (L)(xi ))k
i=1 is close to a centred Gaussian random variable G(L)[X ]:

W2

(
f (L)[X ],G(L)[X ]

)
≤ C
√

nL

L−1∑
`=1

1√
n`
.

The constant C ∈ (0,∞) depends on σ, X and the number of layers L, but not
on the hidden or output layer sizes (n`)L

`=1.
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f (L)[X ] = (f (L)(xi ))k
i=1 is close to a centred Gaussian random variable G(L)[X ]:

W2

(
f (L)[X ],G(L)[X ]

)
≤ C
√

nL

L−1∑
`=1

1√
n`
.

The constant C ∈ (0,∞) depends on σ, X and the number of layers L, but not
on the hidden or output layer sizes (n`)L

`=1.
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Neural Network Gaussian process

All nL output neurons in the Gaussian approximation G(L)[X ] are i.i.d.
variables (for any input).
The covariance K (L)[X ] of G(L)[X ] depends on the activation function σ,
the input X and the output dimension nL (not on the hidden layer sizes
(n`)L−1

`=1 ).

In fact, K (L)[X ] is recursively computable (for simplicity let nL = 1):

K (1)[x , y ] =
1
n0
〈x , y〉+ 1 =

1
n0

n0∑
i=1

x [i]y [i] + 1.

For ` = 2, . . . ,L, define (G(`−1)(x))x∈X as a centred Gaussian random
variable with covariance K (`−1)[X ] and let

K (`)(x , y) = E
[
σ(G(`−1)(x))σ(G(`−1)(y))

]
+ 1.
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Some features of our result

The inequality

W2

(
f (L)[X ],G(L)[X ]

)
≤ C
√

nL

L−1∑
`=1

1√
n`

entails convergence towards the Gaussian law in the wide limit n` →∞
for ` = 1, . . . ,L− 1.
The constant C is explicit, also more general variances for weights and
biases can be considered.
In the deep limit L→∞ each contribution

√
nL/
√

n` naturally associated
to the `-th hidden layer is weighted by an exponential factor (product of
the standard deviations of weights).
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Further properties ofW2

We collect some useful (but elementary) properties ofW2.
If Z is independent of X and Y , then

W2(X + Z ,Y + Z ) ≤ W2(X ,Y ).

Convexity of squaredW2: given random variables X , Y , Z , then

W2
2 (X ,Y ) ≤

∫
RT
W2

2 (PX |Z=z ,PY )dPZ (z)

if X , Y are centred Gaussian random variables with covariances Σ(X ),
Σ(Y ), then

W2(X ,Y ) ≤
∥∥∥√Σ(X )−

√
Σ(Y )

∥∥∥ ,
with ‖·‖ the operator norm and

√
· in the sense of functional calculus.

Dario Trevisan (UNIPI) Wasserstein NNGP arXiv:2203.07379 16 / 45



Further properties ofW2

We collect some useful (but elementary) properties ofW2.
If Z is independent of X and Y , then

W2(X + Z ,Y + Z ) ≤ W2(X ,Y ).

Convexity of squaredW2: given random variables X , Y , Z , then

W2
2 (X ,Y ) ≤

∫
RT
W2

2 (PX |Z=z ,PY )dPZ (z)

if X , Y are centred Gaussian random variables with covariances Σ(X ),
Σ(Y ), then

W2(X ,Y ) ≤
∥∥∥√Σ(X )−

√
Σ(Y )

∥∥∥ ,
with ‖·‖ the operator norm and

√
· in the sense of functional calculus.

Dario Trevisan (UNIPI) Wasserstein NNGP arXiv:2203.07379 16 / 45



Further properties ofW2

We collect some useful (but elementary) properties ofW2.
If Z is independent of X and Y , then

W2(X + Z ,Y + Z ) ≤ W2(X ,Y ).

Convexity of squaredW2: given random variables X , Y , Z , then

W2
2 (X ,Y ) ≤

∫
RT
W2

2 (PX |Z=z ,PY )dPZ (z)

if X , Y are centred Gaussian random variables with covariances Σ(X ),
Σ(Y ), then

W2(X ,Y ) ≤
∥∥∥√Σ(X )−

√
Σ(Y )

∥∥∥ ,
with ‖·‖ the operator norm and

√
· in the sense of functional calculus.

Dario Trevisan (UNIPI) Wasserstein NNGP arXiv:2203.07379 16 / 45



Idea of proof

The Gaussian limit is due to a combination, in each layer, of the central limit
theorem (CLT) scaling for the weights and the almost independence of the
neurons.

We argue by induction over the layers:

For one hidden layer exact independence holds→ straightforward
application of CLT.

We use the triangle inequality forW2 and the inductive assumption→ the
Gaussian approximation yields exact independence.

We bound the error terms using the convexity inequality for the squared
W2 and the explicit optimal transport cost between Gaussians.
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Base case

The case ` = 1 is straightforward, since

f (1)(x) = W (0)x + b(0)

is a linear function of the Gaussian variable W (0) and b(0), thus f (1)[X ] has
Gaussian law, centred with covariance

Σ
(

f (1)[X ]
)

= Σ
(

(W (0) ⊗ Idk )X + b(0) ⊗ 1k

)
= Σ

(
(W (0) ⊗ Idk )X

)
+ Σ

(
b(0) ⊗ 1k

)
by independence,

= Idn1 ⊗ K (1)[X ,X ],
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Induction step

We assume the thesis for 1 ≤ ` < L− 1 and prove it for `+ 1.
Consider any probability space where random variables with the same
laws as f (`) = f (`)[X ] and G(`) = G(`)[X ] are jointly defined.
(Possibly enlarging the space) assume that W (`) and b(`) are also defined
and independent of f (`) and G(`).
Define auxiliary random variables

h(`+1) = (W (`) ⊗ Idk )σ
(

G(`)
)
, g(`+1) = h(`+1) + b(`) ⊗ 1k .

By the triangle inequality,

W2

(
f (`+1),G(`+1)

)
≤ W2

(
f (`+1),g(`+1)

)
+W2

(
g(`+1),G(`+1)

)
,

and bound separately the two terms.
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First term

We bound

W2
2

(
f (`+1),g(`+1)

)
=W2

2

(
W (`)σ(f (`)) + b(`),W (`)σ(G(`)) + b(`)

)
≤ W2

2

(
W (`)σ(f (`)),W (`)σ(G(`))

)
≤ E

[∥∥∥W (`)σ(f (`))−W (`)σ(G(`))
∥∥∥2
]

By conditioning upon f (`) and G(`), we obtain

E
[∥∥∥W (`)σ(f (`))−W (`)σ(G(`))

∥∥∥2 ∣∣∣ f (`),G(`)

]
=

n`+1

n`

∥∥∥σ(f (`))− σ(G(`))
∥∥∥2
.

Finally, since σ is Lipschitz,∥∥∥σ(f (`))− σ(G(`))
∥∥∥2
≤ Lip(σ)2

∥∥∥f (`) −G(`)
∥∥∥2
.
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Second term
We prove

W2
2

(
g(`+1),G(`+1)

)
≤ n`+1

n`
C(`+1), (1)

for an (explicit) finite constant C(`+1) depending on X , σ and only.
We assume that there is no bias (otherwise we remove it easily) and a
Gaussian variable G(`+1)[X ] is also defined in the same space.
Conditioning upon G(`) = z, the random variable

g(`+1) = (W (`) ⊗ Idk )σ
(

G(`)
)

= (W (`) ⊗ Idk )σ (z)

has centred Gaussian law with covariance Idn`+1 ⊗ σ(z) and

σ(z)[j1, j2] =
1
n`

n∑̀
m=1

σ (z[m, j1])⊗ σ (z[m, j2]) .

Using the bound forW2 between Gaussians,

W2
2
(
Pg(`+1)|G(`)=z ,PG(`+1)

)
≤ n`+1

∥∥∥∥√σ(z)−
√

K (`+1)

∥∥∥∥2

.
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By convexity of the squaredW2,

W2
2

(
g(`+1),G(`+1)

)
≤ n`+1E

[∥∥∥∥√σ(G`)−
√

K (`+1)

∥∥∥∥2
]
.

The desired conclusion follows from a general lemma.

Lemma
Let X = (X [i])n

i=1 be i.i.d. random variables with values in Rk (not identically
null). Let M = E [X [1]⊗ X [1]] and define the Rk×k valued variable

Mn =
1
n

n∑
i=1

X [i]⊗ X [i].

Then,

E
[∥∥∥√Mn −

√
M
∥∥∥2
]
≤

E
[
‖X [1]⊗ X [1]−M‖2

]
nλ+(M)

,

where λ+(M) > 0 denotes the smallest strictly positive eigenvalue of M.
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Convergence in functional spaces

As k →∞ we should obtain convergence e.g. in C0(X ) with X ⊆ Rn0

compact. The problem is that C = C(X ) diverges as k →∞.

The question for shallow networks has been addressed, but explicit rates
for deeper networks are missing.

We obtain an abstract bound

W2

(
f (L)[X ],G(L)[X ]

)
≤ inf
ε>0

{
C(X )εγ + C(K)

√
nL

L−1∑
`=1

1√
n`

}
,

where γ ∈ (0,1) and K = {xi}K
i=1 is such that

sup
y∈X

inf
x∈K
‖x − y‖ ≤ ε.
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As k →∞ we should obtain convergence e.g. in C0(X ) with X ⊆ Rn0

compact. The problem is that C = C(X ) diverges as k →∞.

The question for shallow networks has been addressed, but explicit rates
for deeper networks are missing.

We obtain an abstract bound
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Numerical simulations

To explore the scope of our result, we fix the parameters (n`)L−1
`=1 , compute

N � 1 (pseudo)-samples of
1 Gaussian initialized fully connected neural networks (f (L)[X ]i )

N
i=1,

2 centred Gaussian vectors (G(L)[X ]i )
N
i=1 (with the prescribed covariance)

and compute the Wasserstein distance between the empirical measures
(matching problem).

It is known that

W2

(
1
N

N∑
i=1

δf (L)[X ]i ,
1
N

N∑
i=1

δG(L)[X ]i

)
≈ W2

(
f (L)[X ],G(L)[X ]

)
+ N−α.

with α = 1/(nL|X |) (if nL|X | ≥ 3).

⇒ Simulations become less precise if nL|X | is large (curse of dimensionality).
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One input, nL = 1
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Enlarging the input set
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Deeper networks
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Distances of different order p
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A non Lipschitz activation
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Possible extensions and open questions

We keep technicalities at minimum:

W2 could be replaced withWp

the proof should also extend from fully connected architectures to
convolutional or recurrent ones
one should allow for non-Gaussian laws for the parameters, such as
discrete or even stable laws (where the Gaussian CLT fails)

Some interesting questions to address:

Is the bound sharp (possibly allowing for discrete random parameters)?
Properties of the optimal transport map (e.g. w.r.t. hidden layer sizes)
What happens during/after training?
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Supervised learning
In supervised learning (regression/classification) one has a training dataset

T = {(xt , yt )} ⊆ Rn0 × RnL

and a parametrized family of functions (h(·; θ))θ∈Θ,

h(·; θ) : Rn0 → RnL x 7→ h(·; θ).

Aim: find θ “fitting” the training dataset

h(xt ; θ) ≈ yt

and also generalizing well to unseen data x 7→ h(x ; θ). Criteria:

Full Bayesian: specify a prior distribution on p(θ) and compute the
posterior:

p(θ |h(xt ; θ) ≈ yt ∀(xt , yt ) ∈ T )

Variational/Decision: introduce a cost function e.g. (h(x ; θ)− y)2 and
minimize the empirical risk on the training set:

θ∗ ∈ argminθ
∑

(xt ,yt )∈T

(h(xt ; θ)− yt )
2.
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Bayesian posterior

Deep networks f (L) are a parametrized family, θ = (W,b).
Random Gaussian initialized weights and biases specify a prior.
Gaussian processes G(L) also provide a prior (where θ = G(L) itself).

Conditioning upon G(L)(xt ) = yt for every (xt , yt ) ∈ T gives also a Gaussian
posterior:

p(G(L)(x) = · |G(L)(xt ) = yt ∀(xt , yt ) ∈ T ) = N (m(x), σ2(x)),

with

m(x) = K (L)(x ,XT )K (L)(XT ,XT )−1YT
σ2(x) = K (L)(x , x)− K (L)(x ,XT )K (L)(XT ,XT )−1K (L)(XT , x)

Problem: Can we also approximate the neural network posterior?
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Neural Tangent Kernel

Minimization of the empirical risk

θ 7→
∑

(xt ,yt )∈T

(h(xt ; θ)− yt )
2

is usually via (stochastic) gradient descent algorithms (training).

Problem: for h(·; θ) = f (L)(·) the functional is not convex (local minima,
vanishing gradient, . . . )

A solution: in the wide limit min`=1,...,L−1 n` → ∞ the training t 7→ θt is (at first
order) given by an ODE driven by the gradient of the cost and a (constant)
Neural Tangent Kernel NTK (L)(x , y) – explicit and recursively computable:

NTK (L)(x , y) = lim
min`=1,...,L−1 n`→∞

∇θf (L)(x) · ∇θf (L)(y).

Link with Malliavin calculus?
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